快乐人L 发表于 2022-3-26 11:04:44

OpenCV+MediaPipe实现手部关键点识别

目录


[*]可视化辅助函数
[*]单张图片
[*]摄像头检测
[*]改变关键点数据特征

可视化辅助函数

在下面的代码的注释内有大致的操作
基本操作与前面的人脸检测的操作相似,增加了可视化的辅助函数
import matplotlib.pyplot as plt
# 使用ipython的魔法方法,将绘制出的图像直接嵌入在notebook单元格中
import cv2

# 定义可视化图像函数
def look_img(img):
    '''opencv读入图像格式为BGR,matplotlib可视化格式为RGB,因此需将BGR转RGB'''
    img_RGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    plt.imshow(img_RGB)
    plt.show()


#调用摄像头拍照

time.sleep(2) # 运行本代码后两秒拍照

# 获取摄像头,0为电脑默认摄像头,1为外接摄像头
cap = cv2.VideoCapture(0)
# 从摄像头捕获一帧画面
success, image = cap.read()

# 关闭摄像头
cap.release()
# 关闭图像窗口
cv2.destroyAllWindows()

cv2.imwrite('photo.jpg', image)


#调用摄像头拍视频
import cv2
import time
# 定义逐帧处理函数,可不进行任何处理,直接将摄像头捕获的画面写入视频帧
def process_frame(img):
    return img
output_name = 'record_video.mp4'

# 获取摄像头,传入0表示获取系统默认摄像头
cap = cv2.VideoCapture(0)

# 打开cap
cap.open(0)

frame_size = (cap.get(cv2.CAP_PROP_FRAME_WIDTH), cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = cap.get(cv2.CAP_PROP_FPS)

out = cv2.VideoWriter(output_name, fourcc, fps, (int(frame_size), int(frame_size)))

# 无限循环,直到break被触发
while cap.isOpened():
    # 获取画面
    success, frame = cap.read()
    if not success:
      break

    # 对捕获的帧进行图像处理
    frame = process_frame(frame)

    ## 将帧写入视频文件中
    out.write(frame)

    # 展示处理后的三通道图像
    cv2.imshow('press q to break', frame)

    if cv2.waitKey(1) in :# 按键盘上的q或esc退出(在英文输入法下)
      break
# 关闭图像窗口
cv2.destroyAllWindows()
out.release()
# 关闭摄像头
cap.release()
print('视频已保存', output_name)
单张图片

import cv2 as cv
import mediapipe as mp
importtqdm
import time
importmatplotlib.pyplot as plt
def look_img(img):
    img_RGB=cv.cvtColor(img,cv.COLOR_BGR2RGB)
    plt.imshow(img_RGB)
    plt.show()
# 手部关键点检测模型
mp_hand=mp.solutions.hands

# 导入模型
hands=mp_hand.Hands(static_image_mode=False,
                  max_num_hands=5,
                  min_detection_confidence=0.3,
                  min_tracking_confidence=0.3
                  )
# 导入绘图函数
mpDraw=mp.solutions.drawing_utils
img=cv.imread('hand2.png')
# look_img(img)
img_RGB=cv.cvtColor(img,cv.COLOR_BGR2RGB)
results=hands.process(img_RGB)
if results.multi_hand_landmarks:
    for hand_idx in range(len(results.multi_hand_landmarks)):
      hand_21=results.multi_hand_landmarks
      mpDraw.draw_landmarks(img, hand_21, mp_hand.HAND_CONNECTIONS)# 可视化
look_img(img)
cv.imwrite('hands2.jpg',img)
# 在三维坐标系中可视化索引为0的手
mpDraw.plot_landmarks(results.multi_hand_landmarks, mp_

摄像头检测

import cv2
# mediapipe人工智能工具包
import mediapipe as mp
# 进度条库
from tqdm import tqdm
# 时间库
import time

# 导入模型
# 导入solution
mp_hands = mp.solutions.hands
# 导入模型
hands = mp_hands.Hands(static_image_mode=False,      # 是静态图片还是连续视频帧
                     max_num_hands=2,                # 最多检测几只手
                     min_detection_confidence=0.7,   # 置信度阈值
                     min_tracking_confidence=0.5)    # 追踪阈值
# 导入绘图函数
mpDraw = mp.solutions.drawing_utils

# 处理单帧函数

# 处理帧函数
def process_frame(img):
    # 水平镜像翻转图像,使图中左右手与真实左右手对应
    # 参数 1:水平翻转,0:竖直翻转,-1:水平和竖直都翻转
    img = cv2.flip(img, 1)
    # BGR转RGB
    img_RGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    # 将RGB图像输入模型,获取预测结果
    results = hands.process(img_RGB)

    if results.multi_hand_landmarks:# 如果有检测到手
      # 遍历每一只检测出的手
      for hand_idx in range(len(results.multi_hand_landmarks)):
            hand_21 = results.multi_hand_landmarks# 获取该手的所有关键点坐标
            mpDraw.draw_landmarks(img, hand_21, mp_hands.HAND_CONNECTIONS)# 可视化
      # 在三维坐标系中可视化索引为0的手
      # mpDraw.plot_landmarks(results.multi_hand_landmarks, mp_hands.HAND_CONNECTIONS)
    return img


# 导入opencv-python
import cv2
import time

# 获取摄像头,传入0表示获取系统默认摄像头
cap = cv2.VideoCapture(1)

# 打开cap
cap.open(0)

# 无限循环,直到break被触发
while cap.isOpened():
    # 获取画面
    success, frame = cap.read()
    if not success:
      print('Error')
      break

    ## !!!处理帧函数
    frame = process_frame(frame)

    # 展示处理后的三通道图像
    cv2.imshow('my_window', frame)

    if cv2.waitKey(1) in :# 按键盘上的q或esc退出(在英文输入法下)
      break

# 关闭摄像头
cap.release()

# 关闭图像窗口
cv2.destroyAllWindows()
改变关键点数据特征

import cv2
# mediapipe人工智能工具包
import mediapipe as mp
# 进度条库
from tqdm import tqdm
# 时间库
import time
# 导入solution
mp_hands = mp.solutions.hands
# 导入模型
hands = mp_hands.Hands(static_image_mode=False,      # 是静态图片还是连续视频帧
                     max_num_hands=2,                # 最多检测几只手
                     min_detection_confidence=0.7,   # 置信度阈值
                     min_tracking_confidence=0.5)    # 追踪阈值
# 导入绘图函数
mpDraw = mp.solutions.drawing_utils

def process_frame(img):
    # 记录该帧开始处理的时间
    start_time = time.time()
    # 获取图像宽高
    h, w = img.shape, img.shape
    # 水平镜像翻转图像,使图中左右手与真实左右手对应
    # 参数 1:水平翻转,0:竖直翻转,-1:水平和竖直都翻转
    img = cv2.flip(img, 1)
    # BGR转RGB
    img_RGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    # 将RGB图像输入模型,获取预测结果
    results = hands.process(img_RGB)
    if results.multi_hand_landmarks:# 如果有检测到手
      handness_str = ''
      index_finger_tip_str = ''
      for hand_idx in range(len(results.multi_hand_landmarks)):
            # 获取该手的21个关键点坐标
            hand_21 = results.multi_hand_landmarks
            # 可视化关键点及骨架连线
            mpDraw.draw_landmarks(img, hand_21, mp_hands.HAND_CONNECTIONS)
            # 记录左右手信息
            temp_handness = results.multi_handedness.classification.label
            handness_str += '{}:{} '.format(hand_idx, temp_handness)
            # 获取手腕根部深度坐标
            cz0 = hand_21.landmark.z
            for i in range(21):# 遍历该手的21个关键点
                # 获取3D坐标
                cx = int(hand_21.landmark.x * w)
                cy = int(hand_21.landmark.y * h)
                cz = hand_21.landmark.z
                depth_z = cz0 - cz
                # 用圆的半径反映深度大小
                radius = max(int(6 * (1 + depth_z * 5)), 0)
                if i == 0:# 手腕
                  img = cv2.circle(img, (cx, cy), radius, (0, 0, 255), -1)
                if i == 8:# 食指指尖
                  img = cv2.circle(img, (cx, cy), radius, (193, 182, 255), -1)
                  # 将相对于手腕的深度距离显示在画面中
                  index_finger_tip_str += '{}:{:.2f} '.format(hand_idx, depth_z)
                if i in :# 指根
                  img = cv2.circle(img, (cx, cy), radius, (16, 144, 247), -1)
                if i in :# 第一指节
                  img = cv2.circle(img, (cx, cy), radius, (1, 240, 255), -1)
                if i in :# 第二指节
                  img = cv2.circle(img, (cx, cy), radius, (140, 47, 240), -1)
                if i in :# 指尖(除食指指尖)
                  img = cv2.circle(img, (cx, cy), radius, (223, 155, 60), -1)
      scaler = 1
      img = cv2.putText(img, handness_str, (25 * scaler, 100 * scaler), cv2.FONT_HERSHEY_SIMPLEX, 1.25 * scaler,
                        (255, 0, 255), 2 * scaler)
      img = cv2.putText(img, index_finger_tip_str, (25 * scaler, 150 * scaler), cv2.FONT_HERSHEY_SIMPLEX,
                        1.25 * scaler, (255, 0, 255), 2 * scaler)
      # 记录该帧处理完毕的时间
      end_time = time.time()
      # 计算每秒处理图像帧数FPS
      FPS = 1 / (end_time - start_time)
      # 在图像上写FPS数值,参数依次为:图片,添加的文字,左上角坐标,字体,字体大小,颜色,字体粗细
      img = cv2.putText(img, 'FPS' + str(int(FPS)), (25 * scaler, 50 * scaler), cv2.FONT_HERSHEY_SIMPLEX,
                        1.25 * scaler, (255, 0, 255), 2 * scaler)
    return img
# 获取摄像头,传入0表示获取系统默认摄像头
cap = cv2.VideoCapture(0)
# 打开cap
cap.open(0)
# 无限循环,直到break被触发
while cap.isOpened():
    # 获取画面
    success, frame = cap.read()
    if not success:
      break
    frame = process_frame(frame)
    # 展示处理后的三通道图像
    cv2.imshow('my_window', frame)
    if cv2.waitKey(1) in :# 按键盘上的q或esc退出(在英文输入法下)
      break
# 关闭摄像头
cap.release()
# 关闭图像窗口
cv2.destroyAllWindows()
以上就是OpenCV+MediaPipe实现手部关键点识别的详细内容,更多关于OpenCV MediaPipe手部关键点识别的资料请关注脚本之家其它相关文章!
                                                      
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!
页: [1]
查看完整版本: OpenCV+MediaPipe实现手部关键点识别